Patient-First Models

Human Biology Driving Drug Discovery

By capturing real human biology, including epithelial, immune, and mesenchymal components, we make preclinical testing more predictive, actionable, and clinically relevant.

Fixing the Preclinical Foundation:
Poor Predictions to Patient Precision

Divider with Logo

Fibrotic diseases are driven by a complex interplay of genetic predisposition, environmental triggers, and cellular signaling across epithelial, stromal, and immune compartments. Yet most preclinical models, including animal systems and conventional epithelial organoids, fail to capture this multicellular interaction or the patient-specific heterogeneity that underlies disease pathogenesis. This disconnect contributes to poor translational predictability and high rates of late-stage clinical trial failure.
With the FDA moving to phase out animal testing requirements for preclinical studies, Caleo Bio's technology is uniquely positioned to lead the shift toward patient-first, human-relevant preclinical research.

Clinical Relevance

Breaking the Cycleof Failed Therapies

Despite decades of use, traditional preclinical models remain a poor proxy for human outcomes, costing billions in lost investment and delaying better outcomes for patients.

Clinical Relevance

Breaking the Cycleof Failed Therapies

Despite decades of use, traditional preclinical models remain a poor proxy for human outcomes, costing billions in lost investment and delaying better outcomes for patients.

Fixing the Preclinical Foundation:
Poor Predictions to Patient Precision

Divider with Logo

Fibrotic diseases arise from genetic, environmental, and cellular factors, but most models—animals or organoids—miss these dynamics and patient differences. This gap drives poor predictability and frequent late-stage clinical trial failure. With FDA phasing out animal testing, Caleo Bio is positioned to advance patient-first, human-relevant preclinical research.

Clinical Relevance

Breaking the Cycleof Failed Therapies

Despite decades of use, traditional preclinical models remain a poor proxy for human outcomes, costing billions in lost investment and delaying better outcomes for patients.